3,688 research outputs found

    Application of large eddy interaction model to a mixing layer

    Get PDF
    The large eddy interaction model (LEIM) is a statistical model of turbulence based on the interaction of selected eddies with the mean flow and all of the eddies in a turbulent shear flow. It can be utilized as the starting point for obtaining physical structures in the flow. The possible application of the LEIM to a mixing layer formed between two parallel, incompressible flows with a small temperature difference is developed by invoking a detailed similarity between the spectra of velocity and temperature

    WINCOF-I code for prediction of fan compressor unit with water ingestion

    Get PDF
    The PURDUE-WINCOF code, which provides a numerical method of obtaining the performance of a fan-compressor unit of a jet engine with water ingestion into the inlet, was modified to take into account: (1) the scoop factor, (2) the time required for the setting-in of a quasi-steady distribution of water, and (3) the heat and mass transfer processes over the time calculated under 2. The modified code, named WINCOF-I was utilized to obtain the performance of a fan-compressor unit of a generic jet engine. The results illustrate the manner in which quasi-equilibrium conditions become established in the machine and the redistribution of ingested water in various stages in the form of a film out of the casing wall, droplets across the span, and vapor due to mass transfer

    The WINCOF-I code: Detailed description

    Get PDF
    The performance of an axial-flow fan-compressor unit is basically unsteady when there is ingestion of water along with the gas phase. The gas phase is a mixture of air and water vapor in the case of a bypass fan engine that provides thrust power to an aircraft. The liquid water may be in the form of droplets and film at entry to the fan. The unsteadiness is then associated with the relative motion between the gas phase and water, at entry and within the machine, while the water undergoes impact on material surfaces, centrifuging, heat and mass transfer processes, and reingestion in blade wakes, following peal off from blade surfaces. The unsteadiness may be caused by changes in atmospheric conditions and at entry into and exit from rain storms while the aircraft is in flight. In a multi-stage machine, with an uneven distribution of blade tip clearance, the combined effect of various processes in the presence of steady or time-dependent ingestion is such as to make the performance of a fan and a compressor unit time-dependent from the start of ingestion up to a short time following termination of ingestion. The original WINCOF code was developed without accounting for the relative motion between gas and liquid phases in the ingested fluid. A modification of the WINCOF code was developed and named WINCOF-1. The WINCOF-1 code can provide the transient performance of a fan-compressor unit under a variety of input conditions

    Design of optimized three-dimensional thrust nozzle contours

    Get PDF
    Design of optimized three-dimensional thrust nozzle contour

    Complex free energy landscapes in biaxial nematics and role of repulsive interactions : A Wang - Landau study

    Full text link
    General quadratic Hamiltonian models, describing interaction between crystal molecules (typically with D2hD_{2h} symmetry) take into account couplings between their uniaxial and biaxial tensors. While the attractive contributions arising from interactions between similar tensors of the participating molecules provide for eventual condensation of the respective orders at suitably low temperatures, the role of cross-coupling between unlike tensors is not fully appreciated. Our recent study with an advanced Monte Carlo technique (entropic sampling) showed clearly the increasing relevance of this cross term in determining the phase diagram, contravening in some regions of model parameter space, the predictions of mean field theory and standard Monte Carlo simulation results. In this context, we investigated the phase diagrams and the nature of the phases therein, on two trajectories in the parameter space: one is a line in the interior region of biaxial stability believed to be representative of the real systems, and the second is the extensively investigated parabolic path resulting from the London dispersion approximation. In both the cases, we find the destabilizing effect of increased cross-coupling interactions, which invariably result in the formation of local biaxial organizations inhomogeneously distributed. This manifests as a small, but unmistakable, contribution of biaxial order in the uniaxial phase.The free energy profiles computed in the present study as a function of the two dominant order parameters indicate complex landscapes, reflecting the difficulties in the ready realization of the biaxial phase in the laboratory.Comment: 23 pages, 12 figure

    End wall flows in rotors and stators of a single stage compressor

    Get PDF
    A computer code for solving the parabolized Navier-Stokes equations for internal flows was developed. Oscillations that develop in the calculation procedure are discussed. The measurements made in the hub and annulus wall boundary layers are summarized. The flow in the hub wall boundary layer, starting ahead of the inlet guide vanes to the inlet of the rotor is traced

    Breeding grapes for basal fruitfulness

    Get PDF
    corecore